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Abstract

Trapped-ion quantum devices utilize the quantum mechanical behavior of atomic
ions to perform computational tasks. Current systems generally require stable, high-
uniformity magnetic fields and low-noise EM signals to avoid the introduction of unde-
sirable perturbations. We discuss techniques to create permanent magnet configurations
and high-coherence laser systems to achieve these goals.

1 Introduction
Trapped-ion architectures are a leading approach for implementing quantum information
processors, due to the long qubit coherence times and high-fidelity operations offered by this
platform [1–3]. Information can be encoded in ion qubits using discrete energy levels with
transitions driven by lasers operating at optical or IR frequencies [4–6]. To create well-defined,
addressable energy sublevels, it is generally useful to apply a quantizing magnetic field that
lifts the degeneracies in an ion qubit’s Zeeman manifolds [7–9].

Gradients in the applied magnetic field can cause in undesirable decoherence effects in ion
qubits. Transporting an ion qubit through a spatially-varying magnetic field causes dephasing
via an accrual of ‘noisy’ relative phase in the qubit’s internal state, thereby distorting the
encoded information with little recourse for recovery [10]. Magnetic field fluctuations can
furthermore cause shifts in qubit energy levels via the Zeeman effect, skewing state transition
resonance frequencies: Schmidt-Kaler et. al. state that a 1mG fluctuation can cause a 4.2kHz
shift in the 40Ca+ carrier frequency [11]. Magnetic field fluctuations and nonuniformity can
therefore pose a significant constraint on qubit coherence times.
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Recent approaches to avoid decoherence induced by magnetic inhomogeneities include mag-
netic shielding using µ-metal enclosures, and using permanent magnets for quantizing field
generation in place of inductive magnetic sources [2,12,13]. Permanent magnet configurations
do not suffer the same drawbacks as current-driven sources, such as ohmic heating effects
that adversely increase heat load on cryogenic apparatus as well as direct current fluctuations
which introduce undesirable magnetic field noise [12]. It is therefore of interest to create
permanent magnet geometries that provide a target quantizing field strength at low magnetic
field nonuniformity. When used in conjunction with the above approaches, this has the
potential to mitigate qubit dephasing.

Presently, a number of magnetic geometries have been explored to generate homogenous
magnetic fields for sensor calibration and magnetic resonance imaging (MRI) [14,15]. These
include electromagnetic systems, such as Helmholtz, Maxwell coils and n-coil configura-
tions [14,16,17], and also permanent magnet systems, including the Halbach cylinder and its
derivatives [18–20]. We draw upon approaches to formulate and devise a new approach to
optimizing the permanent magnet geometries.

In this paper, we demonstrate and compare efficient computational approaches to optimize
permanent magnet geometries to create high uniformity magnetic fields for trapped-ion
quantum computing applications. Using these numerical schemes, we demonstrate designs
with average magnetic field strength nonuniformity on the order of 0.1ppm or better over the
desired region of interest, complemented by target field strengths on the order of 10G. We
also outline challenges posed by manufacturing variations in generating high uniformity fields
for trapped-ion quantum devices, and assess these effects on permanent magnet performance.

As a next step, we aim to fabricate these high-homogeneity permanent magnet geometries
and measure the resultant B-field gradient achieved in practice within the overall cryogenic
chamber setup. With the method outlined by Walther et. al. [21], a single 40Ca+ ion may be
used to map magnetic field magnitude gradients with high spatial resolution. A key element
of this detection scheme, and of ensuring long coherence times for ion qubits in general, is
that lasers require stable and narrow linewidths. We achieve this in our setup using frequency
locking via the Pound-Drever-Hall technique [22], and via the optical fiber noise cancellation
technique described by Ma et. al. [23].

In the second part of this paper, we present the design and experimental setup of a fiber-noise
cancellation (FNC) laser system based on the Ma et. al. scheme [23], further inspired by
recent implementations [13,24,25]. A bill of materials (BOM) for this setup is provided in
the relevant section.

2 Methods for magnetic field optimization

2.1 Establishing optimization targets
We first outline the target performance figures for a successful permanent magnet geometry.
Three key metrics are used, namely: the magnetic field strength in the chosen region of
interest, the degree of magnetic field homogeneity over the region of interest, and the spatial
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extent of the region with homogenous field.

2.1.1 Target magnetic field strength
40Ca+ is among the most widely-studied ion qubit species for trapped-ion quantum computing
applications. Prior trapped-ion experiments using 40Ca+ have utilized magnetic field strengths
on the order of 2.4 − 5.9G to split degenerate energy levels via the Zeeman effect [11–13].
Based on the Zeeman splitting per unit magnetic field in 40Ca+ [26], a field strength of 10G
can prevent overlaps in the relevant S → D transition frequencies to ensure that populations
are excited to the appropriate sublevel (Y. Motohashi, personal communication, July 14,
2023). We therefore target a nominal magnetic field strength of 10G with our permanent
magnet geometry.

2.1.2 Target degree of homogeneity

The magnetic field strength dependence of transition frequencies used in commonly-used ion
qubits, i.e. 40Ca+ or 9Be+, typically occurs on the order of ∼ 1MHz/G [5,11,26]. We define
stable qubit transition frequencies over the region of interest as having variations of ∼ 1Hz.
As such, magnetic field strength variation of ∼ 10−6G over the region of interest is required.
This is equivalent to an average magnetic field nonuniformity of ∼ 0.1ppm considering the
10G magnetic field strength outlined previously.

In our chosen coordinate system, the region of interest (ROI) lies in the z = 0 plane and the
quantizing magnetic field intersects it perpendicularly, pointing along the z-axis. The planar
ROI is centered on the origin, and we define the point nonuniformity at a point r in the ROI
as follows:

ηROI =
∣∣∣∣∣B (r) − B0

B0

∣∣∣∣∣
where B(r) is the magnitude of the magnetic field strength at position r in our coordinate
system, and B0 is the magnitude of the magnetic field strength at the origin (and is positive
by definition) [17]. A more useful measure used for the optimization problem is the average
nonuniformity over the ROI, which is represented by η̄ROI and also interchangeably referred
to hereafter as the ‘nonuniformity’ unless otherwise noted. The computation to obtain this
value is covered in a later section.

2.1.3 Target spatial extent of homogeneity

The optimized region of interest (ROI) is defined by the surface area of a typical ion trap chip.
Ions are typically shuttled across the extent of the trap surface, an area with dimensions on
the order of 1cm by 1cm for contemporary designs [27–29], and it is essential to minimize qubit
dephasing throughout the ion qubit transport process via the supply of a stable, homogenous
magnetic field. Noting that the scale of trap chips is likely to grow with increasing qubit and
module connections, we select an ROI measuring 2cm by 2cm in the z = 0 plane.
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2.2 Optimization problem definition
We construct a multi-objective optimization problem to find appropriate dimensions for the
permanent magnets that achieve the targets outlined previously.

The problem is defined as follows:

min
x

: η̄ROI = 1
|AROI |

∫∫
AROI

∣∣∣∣∣B(r) − B0

B0

∣∣∣∣∣ dxdy, and

∆B = |B0 − 10|

s.t. x is subject to geometry-specific bounds (see relevant sections for details).
where AROI is the area constituting the 2cm by 2cm region of interest, η̄ROI is the average
nonuniformity over the ROI, and x is a vector of parameters describing each geometry.

2.2.1 Parameter bounds

The physical volume enclosed by the permanent magnet geometry is expected to be constrained
by the size of typical cryogenic chambers used in trapped-ion experiments. Referring to
dimensions from earlier work [12,13] and that of our lab’s current cryogenic chamber, a
cuboidal bound on the dimensions of the overall permanent magnet geometry is set, measuring
340mm × 340mm × 620mm. Specific dimensional bounds pertaining to each geometry are
covered in the relevant sections that follow.

2.3 Choice of permanent magnet geometries
We select for permanent magnet geometries that have inherent structural symmetries. Such
built-in symmetry ensures that the magnetic field strength in at least one coordinate axis over
the region of interest is an even function. This enables the cancellation of all odd derivatives
in the Taylor expansion of the field strength expression along this axis near the origin, similar
to the process outlined in [17], thereby contributing to better homogeneity.

Figure 1: a. 2-ring geometry. b. 3-ring geometry. c. 4-ring geometry. Note that all rings are
co-axial in the N-ring geometries. d. ‘Rod mangle’-type Halbach cylinder.

4



In all, four different permanent magnet geometries were chosen for optimization: N-rings (2,
3, 4), and the rod mangle type Halbach cylinder. A nominal example for each of the chosen
geometries is shown in Figure 1.

2.3.1 N-ring geometries

The N-ring geometries (2, 3, 4-rings) are composed of symmetrical elements we call ‘ringsets’.
Each ringset consists of a pair of rings, symmetric about the z = 0 plane. Within ringset i,
the pair of rings share the same width (wi in radial direction), thickness (ti in z-direction),
perpendicular distance from origin (di along z-direction), and inner radius (ri), as shown in
Figure 2. Note that di is measured from the midpoint of the thickness of each ring.

We count ringsets outwards from the origin, i.e. the closest ringset to the origin is denoted
ringset 1, the next closest ringset 2, and so on. For instance, the 2-ring geometry consists of
only one ringset, while 3 and 4-ring geometries have two ringsets. When the number of rings
is odd, d1 = 0 as ringset 1 is centered on the origin. The nearest pair of rings overlap fully,
forming a single ring in ringset 1 as shown in Figure 2b.

All ringsets are positioned coaxially along the z-axis, and region of interest lies in the horizontal
plane of symmetry. In our models, we study N-ring geometries with ring magnetization in
the +z-direction, through the ring thickness.

Figure 2: a. Cross-section of a coaxial ringset, with the relevant dimensional parameters
labeled. b. Example of ringsets used in describing a 3-ring geometry: ringset 1 lies on the z
= 0 plane and is the closest to the origin, while ringset 2 is the next closest.

For N-rings optimization, each dimension indicated in Figure 2 is constrained within the
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following bounds for a ringset i, in units of mm.

1 < di < 300
1 < ri < 150
2 < wi < 20
2 < ti < 20

2.3.2 Halbach cylinder geometry

Figure 3: a. Continuous Halbach cylinder, with arrows in magnetic material denoting
the direction of magnetization, and the arrow in the air-core denoting the direction of net
homogenous magnetic field that is produced. The magnetic material extends into the page.
Adapted from [30]. b. ‘Rod mangle’ discretization of Halbach cylinder, adapted from [31]. c.
Diagram of N = 6 rod mangle structure with parameters relevant for our optimization model.

The Halbach cylinder is a permanent magnet geometry first proposed by Mallinson [32].
It is defined as a hollow cylinder with a wall constructed of magnetized material, whose
magnetization axis varies as a function of angle. For specific wall magnetizations it is capable
of generating strong, homogenous magnetic fields within its central air-core region [30]. The
analytical expression for wall magnetization that results in greatest homogeneity is given as

B = Brem

(
cos(ϕ)ρ̂ + sin(ϕ)ϕ̂

)
in polar coordinates, with the central magnetic field strength (in the ideal infinite length
limit) given by

|B| = Brem ln
(

ro

ri

)
where ro is the outer radius and ri is the inner radius [33].

In practice, discretized ferromagnetic segments have been used to implement Halbach cylinders.
Especially in the MRI research community, such geometries enable compact, homogenous
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magnetic field sources for medical imaging [34,35]. We have chosen to use the magic mangle
or rod mangle Halbach cylinder discretization [31], where the continuous cylinder wall is
replaced with a set of extended rods magnetized across the diameter, each placed at uniform
intervals along the circumference of the hollow cylinder (see Figure 3c.). For N rods, the
magnetization angle of the ith rod is given by

ϕi = 720◦

N
· (i − 1)

taken relative to the z-axis corresponding to ϕ = 0◦ [19].

The rod mangle structure is useful for several key reasons: (1) it provides better access into
the open cylinder for input and readout from the trap chip located in the hollow cylinder
core, and that (2) it can be constructed from identically-magnetized rods, which improves
the ease of fabricating the structure.

For the rod mangle optimization, the dimensions indicated in Figure 3c are constrained
within the following bounds, in units of mm.

1 < dcyl < 20
21 < D < 300

In our simulations, we fix hcyl = 640mm, the maximum possible length along the longest axis
of the bounding cuboid. This permits closer approximation to the infinite-length limit of the
Halbach cylinder geometry. Optimization is performed over a range of N rods.

2.4 Comparison of objective function schemes
A key part of our investigation centers on finding suitable objective functions and optimization
schemes to foster rapid convergence to the outlined targets of field strength and homogeneity
over the ROI. Two optimization schemes were tested to assess their performance.

Pre-experimental sampling revealed that the Nelder-Mead algorithm used in these schemes
can terminate on different result parameters for depending on the initial guess provided.
This suggests the presence of numerous local optima over the search domain. Therefore,
repeated randomized initialization is necessary to search for solutions which approach the
global optima.

2.4.1 Two-stage optimization scheme, a.k.a. Pippin

We propose a two-stage multiple-shot optimization scheme, named Pippin1, with the following
steps:

1. Generate nshots random shots of starting parameter guesses for a chosen geometry. Each
initial guess is a vector x0 with the ith element x0,i randomly drawn from the uniform
distribution U(ai, bi), where ai and bi are the minimum and maximum constraints
imposed on the ith dimensional parameter.

1Named after the hobbit from the Lord of the Rings. Particularly because there are plenty of magnetic
rings being optimized.
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2. Stage 1 optimization. Minimize x (subject to geometry constraints) with the objective
function C1(x) defined as a discretization of η̄ROI . Numerically, this is performed by
taking the mean non-uniformity over 101 × 101 grid points on the 20mm × 20mm ROI,
giving us the discretized objective function:

C1(x) = η̄ROI = 1
1012

101∑
x=1

101∑
y=1

∣∣∣∣∣B(x, y, 0) − B(0, 0, 0)
B(0, 0, 0)

∣∣∣∣∣
3. Use unique results x1 from stage 1 as starting points for the stage 2 optimization.
4. Stage 2 optimization. Minimize x (subject to respective geometry constraints) with

the objective function:
C2(x) = ∆B · η̄ROI

As before, ∆B = |B(0, 0, 0) − 10|, the L1 norm of the magnetic field magnitude at the
ROI center (in Gauss) relative to the target 10G.

5. Record the results x2 as the final optimized geometry parameters.

For Stage 1 and 2, we use the direct search Nelder-Mead simplex algorithm with adaptive
parameters for objective function minimization, which has been shown to provide an advantage
for optimizing high-dimensional problems [36] over the standard Nelder-Mead algorithm [37].

The Nelder-Mead algorithm in stage 1 uses a convergence threshold of 10−12. The maximum
number of iterations for each shot is 5 × 103. In stage 2, the convergence threshold is 10−18,
and the maximum number of iterations for each shot is 5 × 103. The Nelder-Mead optimizer
terminates when either successive objective function evaluations become smaller than the
convergence threshold, or the maximum number of iterations is reached.

2.4.2 Single-stage optimization scheme, a.k.a. Samwise

In addition to Pippin, we devise a single-stage optimization scheme, named Samwise2:

1. As before, generate nshots random shots of starting parameter guesses for a chosen
geometry. Each initial guess is a vector x0 with the ith element x0,i randomly drawn
from the uniform distribution U(ai, bi), where ai and bi are the minimum and maximum
constraints imposed on the ith dimensional parameter.

2. Single-stage optimization. Minimize x (subject to geometry constraints) with the
piecewise objective function:

C(x) =
∣∣∣∣∣B(0, 0, 0) − 10

10

∣∣∣∣∣ if |B(0, 0, 0) − 10| > 0.1

= η̄ROI if |B(0, 0, 0) − 10| < 0.1

As before, η̄ROI = 1
1012

∑101
x=1

∑101
y=1

∣∣∣B(x,y,0)−B(0,0,0)
B(0,0,0)

∣∣∣ using the discretization of the 101 ×
101 grid points on the 20mm × 20mm ROI.

3. Record the results xf as the final optimized geometry parameters.
2Named after another hobbit from the Lord of the Rings. This one because there are plenty of magnetic

rings being optimized, and it uses a piecewise function. Hence, Samwise.
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The same Python packages are used as in Pippin. The convergence threshold is 10−18, and
the maximum number of iterations for each shot is 5 × 103.

2.5 Candidate geometry selection
Candidate geometries are defined as permanent magnet structures generating a central field
strength within ±1% of the target (|B0| = 10G), and average nonuniformity η̄ROI = 10−7

(0.1ppm) or better. Candidate geometries are then ranked in order of lowest to highest η̄ROI ,
with the lowest η̄ROI geometry being the best candidate. These geometries are used to seed
parameters for further simulations, possibly through finite-element models, and for eventual
manufacturing.

2.6 Computation and parameters
2.6.1 Optimization scheme parameters

In each N-ring geometry optimization, nshots = 50, and for each rod mangle optimization run
with a specific number of rods, nshots = 25.

2.6.2 Materials

The material properties of high-grade SmCo with Brem = 1.09T are used in the following
simulations, aligning with Brem values for the 30H to 32H grades of SmCo offered by Stanford
Magnets [38]. While the material response of high-grade SmCo is typically µr ≈ 1.05, it is
approximated to µr = 1 for the simulation. SmCo is also the permanent magnet material of
choice for cryogenic environments, with a temperature dependence of −0.04%/K [39], among
the lowest of any material [12].

2.6.3 Computation

We perform these simulations in Python, using the Magpylib package for magnetic simulations,
Numpy and Scipy packages for numerical optimization, and Plotly and Matplotlib packages
for data visualization.

The Magpylib Python package enables robust and efficient magnetic simulations using
vectorized analytical approximations [40], and was chosen to facilitate rapid development of
the optimization schemes. The approximations return high-quality results for hard magnetic
materials despite not presently supporting material demagnetization responses, with field
strength errors < 1% for materials of µr < 1.05 [41]. Also, the error decreases with increasing
distance from the magnetized material [Ibid.], and so in the simulations that follow, it is
anticipated to be less prevalent considering the centrally-located ROI that sits at a distance
from magnetized material. The inherent symmetries in the chosen geometries may also further
mitigate the impact of neglecting material response on net field strength inhomogeneity over
the ROI.

Optimizations and simulations in Python were performed on a 2020 M1 MacBook Pro with
16GB RAM.
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3 Nominal Helmholtz coil performance benchmark
The Helmholtz coil is analyzed within our Magpylib-based framework to provide a nominal
performance benchmark for the optimized permanent magnet structures. Helmholtz coils are
an electromagnetic two-coil system commonly used to generate uniform magnetic fields for
sensor calibration, MRI, among other uses [42]. This makes it a suitable yardstick against
which the optimized PMC performance can be measured.

The on-axis field strength at the midpoint of the Helmholtz coil system is derived from the
Biot-Savart Law, and is given by:

B0 =
(4

5

) 3
2 µ0NI

a

where a is the coil radius, which is also the separation distance of the two coils, I is the
current carried by each coil in Amperes, and N is number of turns in each coil [16]. The area
with field strength nonuniformity < 0.1 ppm between the coils scales as a increases.

At B0 = 10G = 10−3T and setting the coil radius to the maximum allowed value a = 170mm,
189.0619 Ampere-turns per coil is needed to generate this field, potentially contributing to
substantial Ohmic heating.

Figure 4: Central field strength and nonuniformity profiles for the Helmholtz coil along the x,
y, and z axes.
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Simulating this coil system gives the magnetic field strength and nonuniformity profiles found
in Figure 4. The average nonuniformity over the ROI is η̄ROI = 3.3600 × 10−6, which fails to
qualify the Helmholtz coil as a candidate geometry.

4 Results for magnetic field optimization
The results for geometries optimized through the Pippin and Samwise schemes are discussed
here. It is noted that for certain structures, there is convergence to both +10G and -10G
following the proposed optimization schemes. Positive field strength values represent the
net field at the center of the ROI pointing parallel to the +z direction of magnetization,
and negative values represent an antiparallel field direction. For integration into trapped-ion
hardware, permanent magnets producing either field strength directions can be utilized.

4.1 2 ring geometry
4.1.1 Pippin scheme

Figure 5: B0 and η̄ROI for 2 ring geometries through each stage of the Pippin optimization
scheme. Each point denotes the performance of a single parameter set corresponding to a
geometry. ±10G field strengths shown by the horizontal green lines. 50 shots converged to
38 unique parameter sets after Pippin stage 1. Of these, 32 parameter sets demonstrated
convergence to within ±1% of |B0| = 10G after Pippin stage 2. Although significant
improvement in nonuniformity was observed, none of the final parameter sets achieved the
0.1ppm threshold, and no candidate geometries were identified.
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4.1.2 Samwise scheme

Figure 6: B0 and η̄ROI for 2 ring geometries before and after the Samwise optimization
scheme. Each point denotes the performance of a single parameter set corresponding to a
geometry. ±10G field strengths shown by the horizontal green lines. All 50 shots converged
to unique parameter sets after Samwise. Of these, 46 parameter sets converged to within
±1% of |B0| = 10G, with the remaining 4 within ±1.0001% of the target value. Although
significant improvement in nonuniformity was observed, none of the final parameter sets
achieved the 0.1ppm threshold, and thus, no candidate geometries were identified.

4.2 3 ring geometry
4.2.1 Pippin scheme

Figure 7: B0 and η̄ROI for 3 ring geometries through each stage of the Pippin optimization
scheme. ±10G field strengths shown by the horizontal green lines. The spread of magnetic
field strengths after stage 2 is truncated to a range within ±20G for clarity. No candidate
geometries were identified.
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4.2.2 Samwise scheme

Figure 8: B0 and η̄ROI for 3 ring geometries before and after the Samwise optimization scheme.
±10G field strengths shown by the horizontal green lines. The spread of final magnetic field
strengths is truncated to a range within ±20G for clarity. No candidate geometries were
identified from this process.

4.3 4 ring geometry
4.3.1 Pippin scheme

Figure 9: B0 and η̄ROI for 4 ring geometries through each stage of the Pippin optimization
scheme. ±10G field strengths shown by the horizontal green lines. The spread of magnetic
field strengths after stage 2 is truncated to within ±20G for clarity. 24 of 50 shots converged
to within ±1% of B0 = 10G. From this, no candidate geometries were identified. The
best-perfoming geometry from this scheme achieves η̄ROI = 1.8995 × 10−7 at B0 = 10.0000G.
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4.3.2 Samwise scheme

Figure 10: B0 and η̄ROI for 4 ring geometries before and after the Samwise optimization
scheme. ±10G field strengths shown by the horizontal green lines. The spread of final
magnetic field strengths is truncated to within ±20G for clarity. 37 of 50 shots converged
to within ±1% of |B0| = 10G, and all 50 converged to within ±1.0001% of |B0| = 10G. Of
these 50 geometries, 5 candidate geometries are identified. The best-performing candidate
geometry achieves η̄ROI = 3.4147 × 10−9 at B0 = 10.066G.

4.4 Overall N-rings comparisons

Figure 11: a. The Samwise scheme provides much better convergence to the target field
strength B0 = 10G than the Pippin scheme given the significantly smaller spread in results.
b. The Pippin scheme appears to have an advantage in retaining low nonuniformity during
optimization, resulting in both lower median and minimum η̄ROI than the Samwise scheme
across all N-ring configurations tested.
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4.5 Best N-rings candidate geometry analysis

Figure 12: a. 3D representation of the best candidate 4-ring structure, obtained through the
Samwise optimization scheme. b. Spatial distribution of magnetic flux in the xz-plane due to
this 4-ring structure, noting that in the z = 0 plane there are no x or y components of the
magnetic field. c. Spatial distribution of magnetic field strength in the xz-plane, along with
a white-dashed outline of the central region with < 10−7.

Figure 13: B0 and nonuniformity profiles for the best N-rings geometry along coordinate
axes.
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The best N-rings candidate geometry is a 4-ring structure obtained through the Samwise
scheme, giving η̄ROI = 3.4147 × 10−9 and B0 = 10.066G. For this geometry, ringset 1 param-
eters are: r1 = 13.9338mm, w1 = 16.0981mm, t1 = 2, 4895mm, d1 = 190.7487mm. Ringset 2
parameters are: r2 = 146.0266mm, w2 = 9.9622mm, t2 = 7.7810mm, d2 = 197.0063mm.

Over the ROI, the magnetic field nonuniformity remains below 10−8. The maximal planar
extent in z = 0 with nonuniformity < 10−7 is a disc of diameter 28mm (see Figure 20).

The effective coverage ratio (ECR) for a given structure is defined as the ratio of homogenous
volume,Vη, to the volume of the minimum bounding cuboid that can contain the permanent
magnet configuration, Vβ (metric adapted from [17]). For this 4-ring geometry:

Vβ = (2d2 + t2) × (2w2 + 2r2)2 = 3.9107 × 107mm3

and Vη is a volume containing the ROI with nonuniformity < 10−7 over its entire extent (see
Figure 12c). It is computed by discretizing a central region measuring 50mm × 50mm ×
50mm into 101 × 101 × 101 identical voxels, and computing the point nonuniformity in the
center of each cube. This allows us to construct the 3D uniform region to a voxel resolution
of

(
50
101

)3
= 0.1213mm3. Given this:

ECR = Vη

Vβ

= 1.1918 × 105mm3

3.9107 × 107mm3 × 100% = 0.0305%

4.6 Discussion of N-ring geometry optimization schemes
We have presented two efficient schemes for rapidly optimizing permanent magnet geometries
for target field strengths and nonunifomity. These schemes, named Pippin and Samwise,
offer different advantages for the multiobjective optimization problem we have described.
Pippin is well-suited to maintaining low nonuniformity levels in resultant geometries, at the
expense of convergence to the target magnetic field strength. Taken together, this leads to a
lower yield of geometries that satisfy both criteria. Therefore, the Pippin scheme would be
recommended for applications where low nonuniformity is of paramount importance, and
where variance may be tolerated in the field strength. Conversely, the Samwise scheme excels
at converging to both criteria, and provides exceptional yield for geometries meeting the
target field strength: well over 70% of 2, 3, 4-rings results achieved the target field strength.
However, this comes at the expense of the degree of nonuniformity attained, and it must also
be noted that Samwise falls short on 3-ring geometries relative to Pippin. We hypothesize
that this behavior may be generalized to odd-numbered N-ring geometries, and this is an
area for further study.

We have also identified several candidate geometries provided by these optimization schemes,
and analyzed the best candidate: a 4-ring configuration attaining η̄ROI = 3.4147 × 10−9 at
B0 = 10.067G. This candidate geometry provides a starting point for further finite-element
analysis and optimization.

The performance of the optimized structures further suggest that the minimum field strength
nonuniformity achieved decreases as a function of N rings, and imply that a lower bound
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exists for the nonuniformity attainable for each N. This would present an opportunity to
further control field strength nonuniformity by introducing more ringsets. However, working
with higher orders of N also comes at the tradeoff of easily manufacturing such permanent
magnets, and may introduce greater variances and errors in alignment.

4.7 Rod mangle (Halbach cylinder) geometry
The rod mangle structure was also investigated and optimized using the Pippin and Samwise
schemes.

4.7.1 Pippin scheme

The Samwise scheme was used to optimize rod mangle geometries with 6 ≤ N ≤ 16. For
each N, 25 shots are used to optimize the geometry. Stage 1 results of the Pippin scheme
are used to determine if lower bounds exist for the average nonuniformity over ROI for each
number of rods N.

Figure 14: Pippin stage 1 outputs for N-rod mangles with plotted medians. a. The median
central magnetic field strength appears to have a dependence on the parity of the number
of rods, such that for each odd N, the median B0 is higher than that of both adjacent N-1
and N+1 geometries with even numbers of rods over the range of N tested. b. Similarly, the
median η̄ROI appears to be tied to the parity of the number of rods. Each odd N configuration
has a lower median average nonuniformity than both N-1 and N+1 geometries over the range
of N tested.
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Figure 15: Pippin stage 2 outputs for N-rod mangles with plotted medians. a. The
dependence of the median B0 on the parity of N still generally features prominently except
for N = 15. However, the spread of B0 increases significantly following stage 2, and this is
primarily due to a proportion of geometries successfully converging to the target B0, with
others failing to do so and staying near their initial field strength values. b. Similarly, the
dependence of average nonuniformity η̄ROI on parity of N is reflected here as well. The spread
of η̄ROI increases from stage 1, as geometries that converge towards the target of B0 = 10G
tend to have higher η̄ROI .

Figure 16: B0against η̄ROI of optimized rod mangle geometries across all N rods (6 ≤ N ≤ 16).
The Pippin scheme enables a number of geometries to converge to average nonuniformity
< 0.1ppm following stage 1. However, after stage 2, convergence to target field strength
typically comes at expense of the average nonuniformity. Indeed, there are no candidate
geometries concurrently satisfying η̄ROI ≤ 10−7 and B0 = 10G from the Pippin optimization
scheme.

Although no candidate geometries were returned via the Pippin optimization scheme, the
best rod mangle (Halbach cylinder) configuration with lowest η̄ROI and central field strength
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within ±1% of 10G was a 9-rod structure achieving η̄ROI = 1.4990 × 10−7 at B0 = 10G.
The parameters for this geometry are dcyl = 1mm, hcyl = 640mm, D = 70.0339mm. This is
particularly surprising as it was expected that a larger number of rods would more closely
approximate the ideal Halbach cylinder, and therefore achieve a lower η̄ROI at the target field
strength.

The thin (dcyl = 1mm) and extended rods (hcyl = 640mm) required to produce this geometry
may prove challenging to manufacture in practice, since SmCo is known to be brittle and
may not provide sufficient structural integrity to form the rod as a single contiguous piece.
Further discussion on manufacturing tolerances is covered in a subsequent section.

4.7.2 Samwise scheme

The Samwise scheme was used to optimize rod mangle geometries with 6 ≤ N ≤ 12.

Figure 17: a. The Samwise scheme provides excellent convergence to the target field strength,
and almost all results lie within the range ±1% of B0 = 10G. b. η̄ROI performance is on par
with that from the Pippin scheme.
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Figure 18: B0 against η̄ROI of rod mangle geometries across all N rods (6 ≤ N ≤ 12),
optimized through the Samwise scheme.

4.8 Discussion of rod mangle geometry optimization schemes
Given the exceptional performance of the Samwise scheme in convergence to the target B0
(close to 100% yield within the ±1% range) and a significant yield of low η̄ROI geometries,
the Samwise scheme is preferred to the Pippin scheme for multiobjective optimization of rod
mangle geometries.

A caveat is that the Samwise scheme could be more computationally expensive in certain
cases than the Pippin scheme to implement, as a complete Samwise optimization for each
N = 11, 12 was completed in about 4-6h on the experimental hardware, while that for Pippin
was completed in 3-5h.

4.9 Best rod mangle geometry analysis
Both Samwise and Pippin schemes did not return candidate geometries, as all final values of
η̄ROI were greater than 0.1ppm. The best-performing geometry was obtained through the
Samwise scheme, and has parameters N = 9, dcyl = 1mm, hcyl = 640mm, D = 69.6867mm.
It achieves η̄ROI = 1.4697 × 10−7 and B0 = 10.0999G.
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Figure 19: a. 3D representation of the best rod mangle geometry, obtained through the
Samwise optimization scheme. The arrows depict the magnetization direction of each of
the 9 rods. b. Spatial distribution of magnetic flux in the xz-plane due to this rod mangle
geometry. c. Spatial distribution of magnetic field strength in the xz-plane, along with a
white-dashed outline of the central region with < 10−7.

Figure 20: B0 and point nonuniformity profiles for the best rod mangle geometry along the x,
y, and z axes. The nonuniformity profile is best along the extended y-axis.

21



5 Permanent magnets in practice
The permanent magnet geometries simulated up to this point are ideal and absent of
misalignments, demagnetization, and process variations. In practice, these physical sources
of error often introduce variances in the nonuniformity and central field strength.

5.1 Manufacturing variations & constraints
One significant source of error arises from permanent magnet manufacturing tolerances.
Tolerances refer to the allowable deviation of the manufactured product from the nominal
dimensions of the design [43], and shrinks with increasing manufacturing precision. In terms
of permanent magnets, manufacturing tolerances may result in the deposition of excess or
insufficient magnetized material over the extent of the geometry, leading to spatial variations
in the magnetic field strength supplied by the permanent magnet geometry. These deviations
can lead to an increase in the average nonuniformity over the ROI, η̄ROI , and a deviation
from the target central field strength B0 = 10G.

The effect of these tolerances has been previously studied in the context of electric motors
[44,45] as deviations generally result in the production of undesirable ‘cogging torque’ that
compromises the efficiency and efficacy of these devices [46].

Here, we present a brief overview of the expected tolerances for permanent magnets placed in
the context of trapped-ion applications, and conduct a brief survey of tolerance effects on
η̄ROI and B0.

The two most relevant permanent magnet materials used with trapped-ion devices are
samarium cobalt (SmCo) and neodymium iron boron (NdFeB). The tolerances for both
materials are relatively similar, and generally vary with the magnet grade, the fabrication
process used, and the overall magnet size. For most manufacturers, the manufacturing
tolerance for these ferromagnetic materials range from ±0.05mm up to around ±0.3mm [47–49]
(Stanford Magnets, personal communication, July 27, 2023).

Manufacturing constraints also pose limits on the minimum dimensions of the permanent
magnet. In particular, SmCo magnets chip and crack easily [48] and designs therefore
require sufficient thickness to maintain structural integrity. The minimum thickness varies by
manufacturing process and equipment used (Stanford Magnets, personal communication, July
27, 2023), and may be specific to each product manufacturer. To prevent cracking during
setup, dedicated support structures may be designed to accommodate and secure the SmCo
permanent magnets within the cryogenic chambers used in trapped-ion quantum hardware.

5.2 Magnetization variations
Deviations in the remanence magnetization Brem is another source of error in permanent
magnets. This is generally dependent on the grade of magnet used, and typically varies
between ±0.01T to ±0.03T for SmCo (2-17 ratio) and NdFeB [50,51] (and Stanford Magnets,
personal communication, November 30, 2022).
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The direction of magnetization is also subject to variation up to 4º from the specified
magnetization axis [49].

Since the efficacies of permanent magnet geometries studied here (N-rings, rod mangle) have
a strong dependence on magnetization direction and remanence, the presence of deviations in
Br and its axis can result in significant adverse effects in both the expected nonuniformity
and central field strength (see Figure 22).

5.3 Nonidealized simulations
Simulations were conducted to analyze the performance of the rod mangle structure under
variations. The nominal structure (N = 9, dcyl = 1mm, hcyl = 640mm, D = 69.6867mm)
used here corresponds to the best-performing 9-rod mangle found using the Samwise scheme
that achieves η̄ROI = 1.4697 × 10−7 and B0 = 10.0999G.

5.3.1 Rod mangle dependence on rod height

Figure 21: η̄ROI decreases rapidly with increasing rod height. The ideal Halbach cylinder is
infinitely long - a useful rod mangle will require an adequately long rod height to achieve low
average nonuniformity in practice.

5.3.2 Rod mangle performance with manufacturing variations

The errors are defined as follows

δBrem ∼ N(0, (α · 0.02)2) in T
δpdeg ∼ N(0, (α · 2)2) in ◦

δrdeg ∼ N(0, (α · 2)2) in ◦

where δBrem is the deviation from the nominal magnetization for a single rod, δpdeg is the
angular displacement of a rod along the perimeter of the cylinder, δrdeg is the angular
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displacement of the rod from its nominal rotation about its own axis, α ∈ [0, 2] and is swept
over the interval in linear steps. nshots = 20 was used for each α value.

Figure 22: a. B0 deviates from its nominal value as deviations increase in magnitude. b.
A significant deviation for η̄ROI is observed, and the median value generally increases for
increasing α. At the same time, the spread of achieved B0 values also generally increases.
The violin plots also provide an overview of the distribution and skew of the data.

6 Design of fiber noise cancelation (FNC) system

6.1 Motivation for FNC
Trapped-ion quantum information processing requires the use of lasers with stable and
narrow linewidth to enable sustained coherence times. Typically, light from a laser source is
coupled into optical fibers for transmission to the ion trap setup. These extended optical
fibers generally extend over a few meters in length, and may cross several rooms. However,
the transmitted signal is highly-susceptible to perturbations, and can accumulate phase
noise due to environmental fluctuations in temperature and pressure [23]. An active fiber
noise cancelation system mitigates this source of error by writing a corrective phase on the
transmitted signal, canceling out the accumulated phase noise transmitted to the experiment-
facing end of the fiber.
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Figure 23: Setup of FNC system. Electrical connections are shown in black, while the 729nm
beam path is shown in red. Dashed red lines indicate retro-reflections.

6.2 Theory
A scheme for fiber noise cancelation was first proposed by Ma et. al. [23] and leverages an
error signal generated by heterodyning a stable-phase reference signal with the reflected signal
from the experiment. A diagram of the full experimental setup is as shown in Figure 23.

The optical path length (OPL) traversed by a light wave in the absence of noise is given by

OPL =
∫

C
n(s) · ds

where C is the path traversed by the beam, and n(s) is the refractive index of the propagation
medium at the point s along the path [52]. Given the presence of environmental noise, the
n(s) term becomes time-varying, and so the OPL acquires a time dependence. For a signal
traversing though a fiber, it accrues a time-varying phase ϕOP L(t) upon emerging at the
endpoint that fluctuates over the characteristic timescales of the environmental noise. The
electric field at the end of the fiber therefore oscillates with the OPL phase [24]:

E = E0 cos(ωt + ϕOP L(t))

To generate the heterodyne signal, we frequency modulate the outbound beam and the
reference beam using an acousto-optic modulator (AOM) as shown in Figure 23.

The incoming laser signal entering the AOM has a frequency ωA. The AOM modulates
the +1st order diffracted beam by the acoustic frequency (emerging signal has frequency
ωA + ωAOM) and imparts a phase determined by the acoustic signal ϕAOM . We denote this
beam as ‘beam A’. The 0th order beam has no additional imparted phase or frequency
modulation. We denote this beam as ‘beam B’.
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Beam A is fiber-coupled and transmitted via a 15m optical fiber to the ion-trap experiment
in an adjacent room. This beam accumulates a phase ϕOP L(t1) at the experiment-end due
to the OPL and environmental noise that couples into the fiber. Beam A is deliberately
partially reflected back through the fiber via index contrasts at the fiber-end interface, and
accrues phase ϕOP L(t2) on the return transmission path. The time of flight (TOF) for beam
A to complete one round-trip between the AOM to the experiment-end is given by:

τT OF = 2 · OPL
c

≈ 2 × 15m
3 × 108m · s−1 = 0.1µs

and it is significantly shorter than the characteristic timescale τnoise on which the environmental
noise varies (environmental noise is taken to vary at 10kHz) [24]:

τT OF ≪ τnoise, τnoise ≈ 1
10kHz = 100µs

Thus, over a single round-trip, the time-varying phase due to the OPL can be taken as
constant, giving ϕOP L(t1) = ϕOP L(t2) ≡ ϕOP L. The total accrued phase when beam A returns
to the AOM is given by ϕAOM + 2ϕOP L. It is then sent through the AOM once more, and
emerges undiffracted since it does not satisfy the Bragg angle.

Concurrently, beam B (the initial 0th order undiffracted beam) is retro-reflected through
the AOM using a D-shaped pickoff mirror. This beam emerges from the AOM as the −1st

diffracted order, with modulated frequency ωA − ωAOM and phase −ϕAOM .

Beams A and B are superposed with each other and collected on a photodiode (PD). In the
time domain, the superposed electric field at the PD can be described as oscillating in the
time domain as follows:

EP D = EA exp(i(ωA + ωAOM)t + ϕAOM + 2ϕOP L) + EB exp(i(ωA − ωAOM)t − ϕAOM)

Taking the phase of beam B = 0 (shifting all phase terms to the term representing beam A),
the intensity measured on the photodiode is then given by

IP D ∝ |EP D|2 = EP D · E∗
P D

= (EA exp(i((ωA + ωAOM)t + 2ϕAOM + 2ϕOP L)) + EB exp(i(ωA − ωAOM)t)) ·
(EA exp(−i((ωA + ωAOM)t + 2ϕAOM + 2ϕOP L)) + EB exp(−i(ωA − ωAOM)t))
= |EA|2 + |EB|2 + 2|EA||EB| exp(i((2ωAOM)t + 2ϕAOM + 2ϕOP L))+
2|EA||EB| exp(−i((2ωAOM)t + 2ϕAOM + 2ϕOP L))
= |EA|2 + |EB|2 + 2|EA||EB| cos(2ωAOM t + 2ϕAOM + 2ϕOP L)

and thus the intensity signal has a beat note at twice the acoustic frequency applied by the
AOM (2ωAOM), carrying a net phase 2ϕAOM + 2ϕOP L. Since the corresponding generated
photocurrent is linearly proportional to the incident intensity, the photocurrent signal also
varies at the same frequency as the beat note.

Using a low-pass filter to remove any of the higher frequency elements on this photocurrent
signal, it is then mixed with the local oscillator (LO) signal using an RF mixer. The LO source
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operates at frequency 2ωAOM . The mixer output is then fed into a digital PID-controller,
which uses the net phase offset between the intensity and LO signals as the error signal.

To minimize the error signal, the PID-controller output is used to adjust the AOM phase
to satisfy the condition ϕAOM = −ϕOP L, which enables complete cancelation of net accrued
phase at the experiment-end of the fiber.

6.3 Experimental setup
The FNC setup is primarily located on a single optical table, with fiber-coupled beam
transmission to an adjacent experiment room, where the ion trap is housed.

The system is implemented with a 729nm Ti:Sa laser source, which is locked to a cavity using
the Pound-Drever-Hall method [22]. A 4f telescope composed of two plano-convex lenses of
f = 100mm is used to collimate the PDH-locked beam entering the FNC setup, near the
edge of the Rayleigh range of the beam. This ensures that the beam waist remains compact
for optimal AOM diffraction efficiency.

Due to the small beam separation between the two beams, a single D-shaped pickoff mirror
is used to retro-reflect the 0th order beam B. The AOM used is rated for a Bragg angle of
8.2mr at 690nm with a corresponding beam separation of 16.4mr, and so by fixing the pickoff
mirror at a distance of about 100mm from the AOM, it is able to reflect only beam B without
affecting propagation of beam A. The AOM used is driven by a VCO operating at 100MHz,
allowing an expected photocurrent beat note frequency of 200MHz from the photodiode.

A Stanford Research Systems SIM960 is chosen as the PID controller for the system. A
custom-made power supply was constructed for this device using two Traco Power AC to DC
converter units supplying ±15V and +5V respectively, each powered by the mains supply.

As the FNC setup is presently underway, the beam path shown in Figure 23 and the following
bill of materials is accurate as of Aug 14, 2023 and may be subject to change.

6.4 Bill of materials

Category Device Quantity
Optics Thorlabs CP33 Lens Mount 2

Thorlabs LA1509-B f = 100mm plano-convex lens 2
Thorlabs Polaris Mirror Mount 2
Thorlabs 1” Broadband Dielectric Mirror, 400-750nm 2
Thorlabs 1” D-shaped Pickoff Mirror 1
Thorlabs 1/2” Polarizing Beamsplitter Cube, 620-1000nm 1
Thorlabs Pedestal Post, assorted As required
Thorlabs Optics Mount Spacer, assorted As required
Thorlabs Pedestal Post Clamp As required
Thorlabs FT030-Blue Optics Fiber 15m length 1
Thorlabs CFC5A-B Collimator 1
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Category Device Quantity
Gooch & Housego AOM 3100-125, center frequency 100MHz 1

Electronics Mini-circuits ZHL-3A-S+ Amplifier 1
Mini-circuits ZLW-1 Mixer 1
Mini-circuits ZOS-150+ VCO 1
Mini-circuits ZFL-11AD+ Amplifier, for photodiode 1
Mini-circuits SMA attenuators, assorted As required
Stanford Research Systems SIM960 PID Controller 1
Traco Power TXLN 035-23M3 +/-15V AC to DC Converter 1
Traco Power TXLN 035-105 +5V AC to DC Converter 1
SMC Cables As required
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