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addressability [3]. Prior works on magnet geometries have
achieved ~100ppm average nonuniformity over the ion trap [1, 4].
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manufacturing tolerances on target metrics. Single-stage optimization algorithm. Two-stage optimization algorithm.
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Use the optimized result from stage 1, X, as
the starting point for stage 2 optimizations.
Stage 2 cost function: C5(X|) = Ay - 1ro;
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Optimization methodology
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Nominal permanent magnet geometries chosen for optimization. o , _ . (ring or rods) == == == . | A
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functions, using the adaptive Nelder-Mead downhill
simplex method [6].
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fit within a 340mm X 340mm X 620mm cuboid.

* Repeat for other cost functions and geometries. We simulated effects of magnet dimension variations and tolerances on

the performance of the optimal rod mangle geometry (N = 9, as above).
(a) Lengthening rod height improves average nonuniformity.

(b) and (c) Increased tolerances result in greater deviations from
target field strength and significantly higher average nonuniformity.

PERMANENT MAGNET MODELING & SIMULATION

Ringset dimensions to be optimized.

Magnetic field lines in xz-plane
due to N = 9 rod mangle.

N = 10 rod mangle.

Rod mangle (N = 6) cutaway
with magnetization direction
and dimensions to optimize.

existing configurations by as much as 1000x.

field strength.
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